

TACE and TARE: Why, When and How

Dr Shivanand Gamanagatti Professor of Radiology AIIMS, New Delhi

Concept of TACE

- Based on taking the advantage of dual blood supply (HA and Portal vein) to liver and tumoral supply by HA
- Delivery of high concentration of chemotherapeutic agent(s) to tumor : (Transarterial route)
- Reduction of damage to non-tumor tissue (selective)
- Prolong dwell time of chemotherapeutic agents within tumor (Embolisation)
- Minimize systemic escape of drugs (Embolisation or Use Beads)

Part 1: When

Patient selection: Indications and Contraindications

Part 2: How

Technique: "Conventional" TACE and New TACE

Part 3: Why

Results: Survival

Treatment of Hepatocellular Carcinoma (HCC): The BCLC Staging System

When?

Indications & Contraindications

Indications

- Nodular-encapsulated HCC >3cms
- Multinodular HCC

Neg. predictive factors

- High tumor burden
- Diffuse/infiltrative HCC
- Hypovascular HCC
- Extrahepatic spread

Contraindications

- Child C
- Occlusion main portal vein
- Relevant N or M stage
- Impaired liver / kidney function
 - bilirubin > 3 mg/dl
 - Creatinin > 150 mmol/l
- Karnofsky-Index < 50%
- Tumor burden > 70%
- Decompensated portal hypertension

How?

Technique

Principle

- Hyperconcentration of cytostatic drug
- Synergistic effect: Reduced arterial inflow -diminish washout- prolong contact time

Materials

- Selective / Superselective catheterisation
- Drugs:
 - Doxorubicin
 - Cisplatin
 - Mitomycin C

Emulsification / embolisation material:

- Lipiodol (arterio-portal connections sinusoids wash out) : Half-life 1 hr
- Drug eluting beads (90% of drug is released over 7-10days)
- Embolising agent: Gelfoam /PVA particles To reduce arterial inflow

TACE - HCC

MRI prior to TACE

Disadvantages of c TACE

• 1-3 chemotherapeutic drugs in an aqueous

All these disadvanatges are now overcome by DE bead TACE

- Lipiouoi acts as carrier but max amount or urug is released within 1 hr
- Toxicity rate is high

Part 1:

Patient selection & technique

Part 2:

"Conventional" TACE

Part 3:

"New " TACE (DEB)

Why Do We need Drug-eluting Technology?

Clear Rationale:

- 1. Maximize drug delivery
- 2. Consistent and standrad protocol (scientifically reproducible)
 - 3. Long lasting effect/slow release (sustained)
 - 4. Tumor effect Vs systemic side effects

Drug Eluting Beads

- O Novel N-filtechnology sulphonate modified hydrogel polymer
- O Embolization system
 - capable of loading drug
 - controlled release of drug

MECHANISM OF LOADING THE DEB WITH DOXORUBICIN

The DEB has a negative charge where as doxorubicin has a positive charge

The doxorubicin is loaded and eluted by an `reversible ionic exchange mechanism

DEB Loading with Doxorubicin

Efficient uptake (>98% of drug removed from solution)

Reproducible, dependent on size Maximum recommended loading 37.5mg/ml

Each 2ml vial may be loaded with up to 75 mg

Controlled Elution from DEB: In Vitro

exchange

Result is less Systemic Exposure

Relative Drug Distributions

So What this Means to the Patient is

- Patients have better response rates
- With less Post Embolization Syndrome
- Reproducible results

Key Technique Points for DEB TACE

- O Utilize adequate sedation and pain management,
- O Identify and protect the cystic artery
- O For discrete lesions, be as superselective as possible. Use a microcatheter whenever possible
- O Additional embolic is not recommended. Do not use lipiodol with DEB
- O Aim for a `near stasis'embolization endpoint

Drug Eluting Beads (DEB)

- 1. Add sterile water to a vial containing doxorubicin hydrochloride powder
- 2. Remove the saline solution from the beads
- 3. Add the doxorubicin solution
- 4. Wait for a time until the red coloration in the solution had diminished and the beads had taken on a red color
- 5. This time is dependent on drug loading solution concentration and bead size
- 6. Loaded beads are aspirated into a syringe and nonionic contrast medium is added in a 50:50 ratio
- 7. The maximum recommended dose is 150mg dose doxorubicin

DC Bead in HCC: Development of Procedural Standards and Technical Recommendations

Loading Dose of Doxorubicin

 Each vial of DC Bead (2 ml of beads) should be loaded with 50-75 mg doxorubicin (loading dose, 25-37.5 mg doxorubicin / ml of beads).

DC Bead in HCC: Development of Procedural Standards and Technical Recommendations

Planned Dose: Single / Small HCC

- Each treatment:
 - 1 vial
 - up to 75 mg doxo

Planned Dose: Large / Multiple HCC

- Each treatment:
 - 2 vials
 - up to 150 mg doxo

Recommended Dosage and choice of bead size

Tumor size	DEB
<3 cm	1 vials of 100-300 μ
3-8 cm	2 vial of 100-300 μ
>8 cm	2 vials of 300-500 μ Next session after 2-4 wks

Bilobar disease: each lobe should be treated separately with a gap of 2-4 weeks

DC Bead in HCC: Development of Procedural Standards and Technical Recommendations

Catheter Positioning

- A superselective (i.e., segmental or subsegmental)
 approach should be used whenever possible by using a
 microcatheter.
- Use of C-arm rotational angiography with a flat-panel detector system (cone-beam CT) is recommended, if available, to improve the accuracy in identifying tumorfeeding arteries and to confirm adequate targeting and saturation of the tumor(s).

DC Bead in HCC: Development of Procedural Standards and Technical Recommendations

Embolization Endpoint

 Injection should be continued until "near stasis" is observed in the artery directly feeding the tumor (i.e., the contrast the contrast column should clear within 2-5 heart beats). At that point, injection should be stopped – regardless of the amount of beads that have been actually administered – to avoid reflux of embolic material.

Conclusions- NEW -TACE

- DEB-TACE: Proven Rationale
- Extension of cTACE
- Excellent PK profile
- Minimal toxicities

- Efficacy: Tumor response 75-85%
- Survival: ~26 months BCLC B-C
- Randomized trial vs. cTACE?

Concept of Radioembolization

Produce selective tumoral necrosis by direct radiation

Concept of Radioembolisation

- Radioactive sources into a tumor
- Effective radiation range is short (mm)
- Administrate a high radiation dose to liver tumor irrespective of their number, size and location
- Delivers a low radiation to normal tissues
- Do not modify arterial blood flow, hence associated with better hepatic tolerance

Transarterial Radioembolization (TARE)

- Performed with iodine-131 (131I) or rhenium-118 labeled lipiodol or yttrium-90 (90Y) microspheres
- Exert local radiation effect
- Relatively limited concurrent injury to surrounding normal tissue
- Major Role of TARE: HCC with Main Portal vein thrombosis (Malignant)
- Limitation: Expensive

Properties of Radioactive agents

Isotope	Emission	Half-life	Mean soft tissue penetration (mm)
lodine-131	β, γ	8 days	0.4
Rhenium-188	β, γ	16.9 h	4.0
Yttrium-90	β	2.7 days	3.0

Contraindications

- Lung shunting > 20% or estimated radiation doses to the lungs > 30 Gy
- Inability to prevent embolization of microespheres into the gastrointestinal tract
- History of prior liver external irradiation
- Relative: Inadequate liver reserve

Technique of TARE

- Delivery Vehicles
 - Lipiodol for Rhenium and Iodine
 - Microspheres (glass and resin) for Yttrium

Injection Technique:

- Simple one step procedure with I-131 and Re-188.
- 3–5 ml of the radiolabeled product is injected non-selectively into the proper hepatic artery if there are multiple tumor foci, or selectively in the case of a single tumor

Yttrium Microsphere injection

Complex, Two step procedure

1st STEP: Arterial mapping, embolisation of arteries that supply extrahepatic tissues GDA, Right gastric artery)

- Labeled macroagglutinated albumin simulating the microspheres is then injected to rule out diffusion into adjacent gastrointestinal organs and to quantify hepatopulmonary shunting
- The activity to be delivered to the target hepatic tissue (the whole liver, lobe or segment where the tumor is located) is then determined.

2ND STEP: Scheduled dose is then administered a few days later

Therapeutic Decision: Treatment Strategies

whole-liver

bilobar

sequential

segmental

subsegmental

Radioembolization in HCC: Which patients?

- •RE as an ablative treatment
- •RE as a downstaging treatment
- •RE in non-surgical candidates
- •RE in advanced HCC

THANK YOU