

Advances of Thermal Ablation

Dr Chandan J Das. MD, DNB, MNAMS

Associate Professor of Radiology, All India Institute of Medical Sciences, New-Delhi.

Disclaimer

Nothing to disclose

Goals of Minimally Invasive Thermal Ablation:

- Primary goal: eradicate all viable malignant cells within target volume
- 0.5–1.0-cm ablative margin of seemingly normal tissue.
- Sparing normal surrounding tissues (accuracy).
- Larger tumors (>/=3 cm) multiple overlapping ablations

Image-guided minimally invasive ablative therapies.

- Thermal
 - Hyperthermic Ablation.
 - Cryoablation
- Nonthermal
 - Chemical ablation
 - Irreversible electroporation
 - Ultrasonic Ablation.

Thermal Ablation Therapies:

- Entire tumor and an ablative margin be subjected to cytotoxic temperatures
- Strategies developed to increase the amount of coagulation necrosis
 - Increasing energy deposition,
 - Modulating tissue characteristics,
 - Modifying tissue blood flow.

Hyperthermic Ablation:

- Thermal ablation of focal tumors uses high-temperature tissue heating (>50°C) surrounding applicators placed at the center of a tumor.
- Irreversible cellular injury: 46°C for 60 minutes, and more rapidly at higher temperatures
- Optimal temperatures for ablation : 50°C to 100°C.

Hyperthermic Ablation:

- Classic findings of coagulative necrosis several days later.
 - Implications: early posttreatment percutaneous biopsy and standard histopathologic interpretation may not be a reliable measure of adequate ablation.
- Critical temperature : Maximum temperatures at the edge of the ablation zone
 - 30°C to 77 °C for normal tissues
 - 41°C to 64°C for tumor models.
- Thermal dose required to induce cell death varies in different tissues

Radiofrequency ablation (RFA): Principle

- RFA causes coagulation necrosis of tumor tissue
- By applying temperatures of 60–90°C.
- Resulting protein denaturation is irreversible.
- Thermal energy also cauterize tumor-vessels
- To ensure complete tumor ablation
 - the entire tumor volume plus a 5–6 mm wide safety margin to be heated
 - up to a temperature of 60°C

Radiofrequency ablation (RFA): Principle

- Temperatures exceeding 50°C
 - Chromosomal alterations
 - Protein denaturation
 - Damaging cellular membranes
 - Damaging transport proteins
- General consensus has held that temperatures should reach 50–60°C

- Electrical circuit: generator cabling electrodes tissue(resistive element).
- Joule effect leads to heat generation.
- Ablative heating tissue dehydration and water vaporization sudden increases in impedance - inhibit current flow from a generator.
- Methods to decrease circuit impedance & augment RF current flow:
 - expanding the electrode surface area
 - Pulsing the input power
 - Injections of saline.

Electrodes:

- Monopolar mode: Most RF ablation systems
- •Two different types of electrodes:
 - Interstitial electrodes delivers energy to the tumor, creating localized heating.
 - Dispersive electrodes (ground pads) on the skin surface disperse energy over a large surface area to reduce thermal injury to the skin.
- Monopolar electrode designs include both
 - straight insulated needles with an exposed metallic tip and
 - multitined electrodes.

- Internally cooled electrodes use a single needle, in which fluid is circulated inside the electrode's active tip, and temperatures at the electrode-tissue interface are reduced.
 - Lower temperatures inhibit charring allows increased power deposition – clinically relevant ablations.
 - smaller caliber applicator (17 gauge, 1.5-mm diameter)

<u>Electrodes with multiple tines</u> - aim to distribute energy spatially.

- 1) Nondeployable multitined electrode
 - Three single 17-gauge electrodes spaced 5 mm apart triangular configuration
 - Limited puncture area
 - Zones of ablation over 3 cm in diameter in normal liver in 12 minutes with a 200-W generator.
- 2) Deployable multitined electrode deploy several smaller electrodes from a single needle shaft
 - Star-shaped arrays 14-gauge (2.1-mm diameter) needle in arrays of 4, 9, or 12 tines.
 - Umbrella-shaped arrays 10 tines and a 13-gauge needle.

zones of ablation - ~3–4 cm in diameter.

- Bipolar systems current oscillates between two interstitial electrodes without the need for a ground pad.
 - Restricts current flow primarily to the area between the electrodes
 - Protects from perfusion-mediated cooling
 - Faster more focal heating.
 - Saline infusion to increase energy delivery between the electrodes.
- Multipolar operation switch between pairs of bipolar electrodes situated on individual needles.

Generator and ground pads:

- •Generators 150 to 250 W (Lower in areas of high background impedance, lung)
- Higher-power designs currently under development.
- •feedback and control system:
 - Impedance-based and
 - Electrode temperature—based controls.

- Ground pad used provide a large dissipative surface for electrical current flow through the skin.
- Skin burns can result from uneven placement or insufficient number of pads.
- Strategies to prevent ground pad burns
 - Monitoring temperature and impedance through each pad,
 - Cooling the pad,
 - Optimized pad designs,
 - Switching between pads to reduce heating.

RFA of Renal Mass

Case: H/o right nephrectomy, SRM in left kidney

End point of RFA

- Duration of RFA : 5–20 min
- Success of RFA ablation depends on impedance of target tissue.
- Impedance rise reflects the dehydration of the ablated tissue.
- Once the impedance threshold is reached, the ablation process is repeated
- This is to ensure complete coagulation necrosis of the tumor

Microwave Ablation

- Microwave electromagnetic energy in the 300 MHz to 300 GHz range
- Dielectric hysteresis (rotating dipoles) Microwave heating
- Advantages :
 - Microwaves readily penetrate through biologic materials.
 - Can be continually applied to produce extremely high (~150 'C) temperatures.
 - Do not require ground pads.
 - Multiple antennas can be operated simultaneously.

Microwave Ablation

Disadvantages:

- •Inherently more difficult to distribute.
- •higher microwave powers can lead to unintended injuries to other tissues, such as the skin.
 - Adding a cooling jacket around the antenna can reduce cable heating and skin burns.

Microwave antenna

Microwave ablation

Microwave ablation of Liver Metastasis

Microwave ablation of Renal Mass

Cryoablation

- Common clinically treated tumors include focal primary renal tumors and palliative treatment of osseous metastases.
- Joule-Thomson—based systems:
- Joule-Thomson effect: describes the change in temperature of a gas resulting from expansion or compression of that gas.
 - Argon cools during expansion; helium warms.
 - Used to create unique freeze and thaw cycles Current cryoablation systems.

Cryoablation (CA): Principle

- Cryoprobe is inserted into the tumor under CT/US guidance
- Lowering the temperature of the adjacent tissue by means of helium or argon down to -40 to -60°C.
- Repeated freeze-thaw cycles ultimately result in the destruction of cell organelles and membranes
- The created intracellular ice crystals cause irreversible hydropic cell damage
- Cycle: 10-min freezing phase 8-min active thawing phase 10-min re-freezing phase.

Cryoablation

- Gas expansion occurs in a small chamber inside the distal end of the cryoprobe to create
 - heat sink during freeze cycles and
 - heat source during thaw cycles

Cryoablation (CA): Principle

Ice Ball with central probe

To guarantee the ablation, iceball is generally carried 5 to 10 mm beyond the edge of the tumor when viewed under real-time imaging

Mechanism of Tissue Destruction in CA

- CA cellular injury classified as
 - cellular
 - vascular
 - immunologic

Cryoablation

- Newer system under development uses nitrogen near its critical point to provide lethal cooling.
 - more efficacious than Joule-Thomson—based systems.
- Advantages:
 - Smaller cryoprobes
 - Larger zones of ablation.

Laser Ablation

- Lasers induce electromagnetic heating to elevate tissue temperatures to lethal levels
- Advantage:
 - Eliminate image artifacts on CT and MR images. Thus, reasonable to perform MR temperature mapping: prostate
 - It may be coupled through optical fibers, which are inherently magnetic resonance (MR) imaging compatible.
 - The lack of metal in the power distribution chain and
 - Relatively small diameter of most applicators effectively.
- Efficient and precise energy source for tissue heating.

Laser Ablation

Limitations:

- •Limited energy penetration and create smaller ablation zones (1–2-cm diameter).
- •Does not penetrate through charred or desiccated tissues.

Laser Ablation

- Prostate cancer
- 980 Diode LASER
- Inbore Magnet guidance

Ref: University of Chicago website

High-intensity Focused Ultrasound (HIFU)

- Based on focused concentration of high-intensity US waves.
- At focal point, HIFU causes rapid increase in temperature 90^{0C}
- Soft tissue undergo cellular necrosis
- No need to puncture the tumor
- No risk of hemorrhage and tumor spillage

High-intensity Focused Ultrasound (HIFU)

HIFU is ideal for

- localized prostate cancer
- •PSA <10
- •Gleason </= 7
- •Prostate volume </=50cc</p>

Complications of Thermal Ablation

- Post-ablation syndrome (myalgia, fever, nausea <48 h) (22%)
- Self-limiting hematuria (20%)
- Temporary cloudiness of urine
- Self-limiting perirenal hematon
- Perirenal hematoma requiring t
- Ureteral stenosis (1.5%)
- Skin Burns (<2%)

Follow up after Thermal Ablation

- Short-term follow-up: after 3 m to identify any residual tumor
- Long-term follow-up: after 6 m and then yearly intervals
- Follow-up imaging
 - CECT
 - CES
 - CEMRI
- Look for progressively increase in size of mass
- Recurrence should be distinguished from a small ribbon of scar tissue which delimits the outer ablation margin

Pre RFA

Post RFA

* Das CJ et al. Indian J Urol. 2015;31(3):202-8. Image-guided urological interventions: What the urologists must know.

Current and Future Research

Modulating Tissue Characteristics:

- Tissue perfusion foremost factor limiting thermal ablation.
- •Larger diameter blood vessels (especially > 3 mm) act as heat sinks
- •Zone of coagulation increases when blood flow reduces.
 - Arterial embolization techniques (eg, balloons, coils, particles, or lipiodol agents).
 - Intraarterial and systemic pharmacologic agents, such as halothane and arsenic trioxide
 - Antiangiogenic therapies: sorafenib

Effect of blood flow on RF ablation size

Electrical conductivity

- Thermal conductivity –
- Effects of varying tumor and surrounding tissue thermal conductivity on effective heat transmission during RF ablation
 - Poor tumor thermal conductivity limits heat transmission centrifugally away from the electrode.
 - Increased thermal conductivity (in cystic lesions) heat dissipation incomplete and heterogeneous tumor heating.

Electrical conductivity

- Oven effect increased heating efficacy for HCC surrounded by cirrhotic liver.
- Tissue and tumor thermal conductivities useful to predict ablation outcome in varying clinical settings
 - Exophytic renal cell carcinomas surrounded by perirenal fat.
 - Lung tumors surrounded by aerated normal parenchyma.
 - Osseous metastases surrounded by cortical bone.

Electrical conductivity

- Altering the electrical environment immediately around the RF electrode with ionic agents prior to or during RF ablation.
 - Increases coagulation volume.
 - Saline infusion.
- Hydrodissection: Nonionic fluids used to protect tissues adjacent to the ablation zone (eg, diaphragm or bowel) from thermal injury.
 - -5% dextrose

Ahmed et al. Radiology: 258: 2011

Computer Modeling in Understanding Tissue Heating Patterns

- Computer models to simulate ablation of focal tumors
- It can predict tissue heating patterns
- More realistic and clinically relevant simulation.
- Improve RF predictability
- 3D printing

Combining Percutaneous Ablation with Other Therapies

- Target tumors can be conceptually divided into three zones:
 - central area, predominantly treated by thermal ablation, that undergoes heat-induced coagulation necrosis
 - peripheral rim that undergoes reversible changes from sublethal hyperthermia
 - surrounding tumor or normal tissue : unaffected by focal ablation

Ahmed et al. Radiology: 258: 2011

Combining Percutaneous Ablation with Other Therapies

- Strategy to increase the completeness of tumor destruction
- Goal to increase tumor destruction within the sizable peripheral zone of sublethal temperatures
- Tumor death can be enhanced by combining thermal therapy with adjuvant chemotherapy or radiosensitizers

Thermal ablation with chemotherapy

- Chemotherapy free or contained within liposomes
- Effects occur preferentially in peripheral zone of hyperemia
- Treatment effect extended to encompass peritumoral liver
- Enabled the destruction of the difficult 0.5–1.0-cm ablative margin

Thermal ablation with chemotherapy

- Underlying mechanisms- multifactorial
- Improved intratumoral drug delivery- owing to
 - increased circulation time
 - increased drug release with thermosensitive liposome types
 - vascular effects of sublethal hyperthermia in peripheral treatment zone
- Combined cytotoxic effects of the chemotherapy and heat increase apoptosis
- Heat-related cytotoxic effects of the <u>liposome</u> itself.

Combining thermal Therapy with targeted drug delivery

Thermal ablation with chemotherapy

Combined RF ablation and liposomal doxorubicin in an 82-year-old man with an 8.2-cm vascular hepatoma.

Ahmed et al. Radiology: 258: 2011

Thermal ablation with Radiation therapy

- Increased tumor destruction by combining external beam radiation therapy and low-temperature hyperthermia.
- Mechanism:
 - Sensitization of the tumor to subsequent radiation- owing to increased oxygenation from hyperthermia induced increased blood flow.
 - Radiation-induced inhibition of repair and recovery and increased free radical formation.
 - Increase in oxidative and nitrosative stress.
- research needed to identify the optimal temperature for ablation, the optimal radiation dose, and the most effective method of administering radiation therapy.

Thermal ablation with Radiation therapy

Combining RF ablation with external beam radiation for treatment of subcutaneously implanted rat breast tumor.

Conclusion

- Minimally invasive percutaneous ablation has been well recognized as an important tool in the treatment of focal malignancies
- Equipment and technologic modifications that have been developed to further improve clinical success of this therapy
- Challenge: To optimize these devices for improved energy delivery to specific organ systems or tumor types to improve predictive abilities
- To develop combination therapies to further improve the clinical effectiveness of minimally invasive thermal ablation

THANK YOU