

IBD PATHOGENESIS AND ITS RELEVENCE TO TREATMENT

Department of Gastroenterology
PGIMER
Chandigarh

INTRODUCTION

- IBD immune-mediated disease
- Complex pattern/interplay of host genetics and environmental influences
- Substantial progress in understanding the pathophysiology
- Translated into newer, more effective therapies
- Improved the quality of life of patients with IBD

OUTLINE

- Overview of gut immunity
 - Innate immunity
 - Intestinal barrier
 - Innate immune cells
 - Adaptive immunity
- Gut microbiome
- Evidence of dysfunction in pathogenesis
- Relevance for therapy

MULTIFACTORIAL PATHOGENESIS

INNATE IMMUNITY Epithelial barrier

EPITHELIAL BARRIER

BARRIER DYSFUNTION

- Abnormal permiability established in CD patients
- GWAS studies CD risk locus MUC 19 intestinal mucus layer
- Barrier dysfunction directly has been observed by confocal endomicroscopy
 - Predictive of IBD relapse
- Polymorphic variations in several IBD-associated genes primary affect epithelial permiability
- Epithelial cell death(paneth cells) caspase 8 deletion – CD in humans

LOSS OF BARRIER FUNCTION Confocal endomicroscopy

Gut 2012

EPITHELIAL PERMIABILITY

Excessive antigen uptake

Continuous immune stimulation

Mucosal inflammation

INNATE IMMUNITY

- Rapid and less specific response to invading microorganisms or toxic macromolecules
- Innate immune cells
 - Macrophages
 - Dendritic cells
 - Atypical lymphocytes and NKT
- Pathogen recognition receptors (PRR) and pathogen-associated molecular patterns (PAMPs)
- Autophagy pathway

INTESTINAL MUCOSAL IMMUNE SYSTEM

PRR and PAMPs

- PRR
 - Membrane bound (ie, Toll-like receptors [TLRs], Ctype lectin receptor) or
 - Cytoplasmic (ie, nucleotide-binding oligomerization domain family members [NODs], retinoic acid—inducible gene 1—like receptor)
- PAMPs (eg, lipopolysaccharide and peptidoglycan)
 - highly conserved molecules on microbes as they are central to survival

MACROPHAGES

MACROPHAGES Setting of pathogen invasion/inflammation

Convert to a proinflammatory phenotype (ligation of their PRR)

Phagocytosis + secretion of cytokines IL-1, IL-6, IL-8, TNF-α and TGF-β and recruits cells

Critical link between innate and adaptive immunity

DENDITIC CELLS

- Phagocytic and APCs
- MHC class II molecules

- T regulatory cells (Tregs)
- Anti-inflammatory cytokines IL-4, IL-10 and TGF-β
- Proinflammatory microenvironment -migrate to T cell areas of the GALT
 - induce effector responses
 - Induce mucosal homing receptor $\alpha 4\beta 7$ and chemokine receptor CCR9 on T cells

ATYPICAL LYMPHOCYTES

- $\gamma\delta$ TCR chains
- >10% of SI intraepithelial lymphocytes
- Do not depend on thymus for development
- Do not recognize antigen in association with MHC class I or II
- Effectors against pathogens and tumors and also act as APCs

Natural Killer T cells (NKT cells)

- Mature in the thymus and recognize lipid antigen (presumably bacterial)
- On activation, they secrete large quantities of proinflammatory cytokines and
- readily kill infected cells or tumor cells
- Produce large amounts of proinflammatory cytokine IL-13 have been found in the intestine of patients with UC

INNATE IMMUNE CELLULAR DYSFUNCTION

- The most recent metaanalysis GWAS in IBD
 - susceptibility genes involved in innate mucosal defense (NOD2, CARD9, REL,SLC1A) and
 - antigen presentation (ERAP2, LNPEP)
- Small bowel CD is the loss-of-function polymorphisms in the bacterial sensing gene CARD15/NOD2

INNATE IMMUNE CELLULAR DYSFUNCTION

- In CD -defective inflammatory response to injury and bacterial products
- Failure of clearance of bacteria and inflammatory debris
 - Disruption in the autophagy pathway
 - GWAS ATG16L1 risk allele contributes to Paneth cell dysfunction
- Multiple ER stress-related genes like XBP1 have been associated with IBD

NOD 2 GENE AND CD

- 2-fold risk for CD heterozygotes and an approximately 20-fold risk FOR homozygotes or complex heterozygotes
- Mutation- reduced NFkB expression
- But NFkB elevated in CD
- Multiple theories to explain this

TARGETS FOR THERAPY

- TNF α inhibitors Infliximab etc
- IL-12/23 Ustekinumab
- IL-13
 - QAX576 IL-13,
 - Anrukinzumab,
 - Tralokinumab
- TLR- DIMS0150 and BL-7040

ADAPTIVE IMMUNITY

- Central role in human and experimental IBD models
- Adaptive immune cells
 - T cells
 - Tregs
 - B cells

T CELLS

- CD4+ AND CD8+ equal proportions in LP
- CD4+ essential role in the pathogenesis
- Costimulation via CD28 (on T cells) and B7.1 or B7.2(on APC) -T-cell activation
- Costimulation mediated by cytotoxic Tlymphocyte antigen 4 (CTLA-4) (on T cells) by B7.1 or B7.2 results in T cell inhibition

T HELPER CELLS

ACTIVATED T CELLS

Cognate antigen+T cell – proinflammatory cytokines – TNF α

Upregulate adhesion molecules, alter the blood flow, endothelial cell shape, and vascular permeability to enhance the migration of inflammatory cells

Structural alterations in the inflamed tissue, including ulceration

Tregs

- Subpopulation of CD4+ T cells
- Restrain not only effector T cells but also innate inflammatory leukocytes
- suppress mucosal inflammation and murine colitis
- Evidence that effector T cells obtained from patients with IBD are refractory to suppression by Tregs

ADAPTIVE IMMUNE CELLULAR DYSFUNCTION

- T cell–driven animal models of colitis mimic human IBD
- IL-23 receptor variant associated with CD impairs the IL-23—induced Th17 effector function and is a protective genetic variant
- Established and emerging therapies –
 destruction of activated effector T cells or the
 blockade of T cell–derived proinflammatory
 cytokines

ADAPTIVE IMMUNE CELLULAR DYSFUNCTION

- Clonal populations of T cells (ie, expansion of T cells in response to persistent and specific antigens) – CD
- Animal model of IBD, similar T-cell clones
- Patients with IBD have antibodies directed against particular microbial antigens

TARGETS FOR THERAPY

Biologic Target	Antibody/Drug	Mechanism of Action	CD, UC, or Both
CCR9	CCX282-B CCX 025	Inhibition of CCR9 Inhibition of CCR9	CD CD
IL-21	PF 05230900	IL-21 receptor antagonist	CD
IL-13	QAX576 Anrukinzumab Tralokinumab	IL-13 antagonist IL-13 antagonist IL-13 antagonist	CD UC UC
IL-17	Vidofludimus	Inhibitor of IL-17 A and IL-17F	Both
IL-12/23	Ustekinumab	Blockade of IL-12/23	CD
IL-18	GSK1070806	Blockade of soluble IL-18	CD
IL-6 and IL-6R	Tocilizumab PF04236921	Inhibitor of IL -6 Inhibitor of IL -6	CD CD
IP-10	MDX 1100	Blockade of interferon-γ inducible protein (IP-10 or CXCL10)	UC
IRAK4/TRAF6/ MyD88	RDP58	Disrupts IRAK4/TRAF6/MyD88 signaling and reduces production of proinflammatory cytokines	Both
JAK3	Tofacitinib	Inhibition of JAK3	Both

TARGETS FOR THERAPY

MAdCAM-1	PF-547659	Blocks MAdCAM-1	Both
NF-κB	HE3286	Synthetic steroid that modulates NF-κB activity	UC
NKG2D	NN8555	Anti-NKG2D receptor monoclonal antibody	CD
PKC	AEB071/Sotrastaurin	PKC inhibitor	UC
T Cell	Laquinimod	Reduces IL-17 level and interferes with migration of T cells	CD
TLR	DIMS0150 BL-7040	Blockade of Toll-like receptor Blockade of Toll-like receptor	UC UC
TNF-α	Infliximab Adalimumab Certolizumab pegol Golimumab Debiaerse	Neutralization of TNF-α Neutralization of TNF-α Neutralization of TNF-α Neutralization of TNF-α Vaccine against TNF-α consisting of a TNF-α derivative TNF-α kinoid	Both Both CD UC CD
Effector T cells, B cells	Antigen specific Type 1 regulatory cells (OvaSave)	Autologous ova expanded regulatory T cells injected	CD
α4 integrin	AJM-300	Blockade of α4 integrin	CD
α4 integrin	Natalizumab	Blockade of α4 integrin	Both
α 4 β7 integrin	Vedolizumab	Blockade of α4β7 integrin	Both
β7 integrin	Etrolizumab (aka rHuMab β7)	Anti-β7 integrin	UC

GUT MICROBIOTA

- Pivotal role
- No germs: No IBD (No IBD in germ free rats)
- The flora in IBD:
 - More often has pathogens
 - More adherent bacteria
 - Reduced diversity: ecology disturbed
 - Increased Enterobacteriace; Decreased Firmicutes
 - ? Role of fungus (ASCA +vitiy)

MICROBES AND IBD

- Change of flora effective in Rx
 - Antibiotics
 - Probiotics
 - Elemental diet
- Infection precipitates flares

PATHOGENIC OR ALTERED COMMENSAL BACTERIA

- Enhanced epithelial adherence
- Epithelial invasion
- Resistance to killing
- Acquisition of virulence factors
- Stimulation of innate and adaptive immunity
- production of butyrate causes poor epithelial integrity
- Increased production of toxic metabolites like H₂S

MICROBIAL PATHOGENS

- Mycobacterium avium paratuberculosis (MAP)
 - May infect genetically susceptible CD patients with intracellular bacterial killing defects due to ATG16L1, NOD2, or NCF4 polymorphism
- Adherant invasive E.coli
 - Identified from inflamed ileal mucosa of CD
 - E coli DNA in 80% of granulomas
 - High titres of Anti-Ecoli Ab in 55% of Crohns disease
- Enterotoxigenic Bacteroides fragilis in 19% of IBD
- Enterococcus faecalis

DYSBIOSIS

- Alteration of indigenous microbiota alters
 - Dominant antigens
 - Metabolic function of the gut
- Intestinal mucosal bacteria found at concentration greater than 10⁹/ml in
 - 95% of IBD patients
 - 65% of IBS patients
 - 35% of healthy controls
- CD occurs in intestinal segments with the highest bacterial concentrations

TARGETS FOR THERAPY

- Probiotics
- Antibiotics
- Limited success

TO SUMMARIZE

TARGET	THERAPY
Epithelial barrier	
Innate immunity	Biologicals
Adaptive immunity	Steroids, Immunosupressive medications, Biologicals, Immunotherapy
Gut microbiota	Probiotics, Antibiotics

CONCLUSION

- Studies of mucosal immunity have lead to recent advances in therapy
- GWAS data and studies on microbiome unraveled the complex interaction between host and environment
- Many aspects of mucosal immunity remain unclear
- Clinical phenotype doesn't correspond to the immunophenotype of patients